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Abstract

The quasi-steady shape and drag of isolated drops and bubbles are reviewed in terms of quantitative results, particularly for deformed
conditions. Data in the literature were investigated to provide a comprehensive description of observed theoretical, experimental and
numerical trends. New descriptions of the aspect ratio and quasi-steady drag coefficient were developed which approach the theoretical
limits for creeping flow and attached thin boundary layer conditions, while representing experimental data and resolved-surface simu-
lations at other conditions (many of which are only recently available). These relationships are novel in the sense that they are formulated
in terms of the local Weber and Reynolds numbers (as well as density and viscosity ratios), as opposed to static parameters only valid at
terminal velocity conditions (e.g. Bond number and Morton numbers). The results indicate that aspect ratio is a unique function of
Weber number for fluid particle Reynolds numbers over 100 (especially for clean bubbles and liquid drops in a gas). This is consistent
with theoretical results for small deformations. General relations were developed for minimum drag (for a sphere) maximum drag (at
maximum-deformation), from which drag increments for intermediate deformation could be defined. These increments correlated espe-
cially well with Weber number for clean bubbles and liquid drops in a gas in terms of a group parameter WeRe0:2

p . Further research is
necessary to integrate these results with effects of neighboring fluid particles and/or walls.
� 2007 Elsevier Ltd. All rights reserved.
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1. Spherical solid particles

With respect to the velocities of the different phases, the
particle velocity (v) is defined as the translational velocity
of the particle center of mass (xp). The continuous-fluid
velocity (u) is generally defined in all areas of the domain
unoccupied by particles. However, a hypothetical continu-
ous-phase velocity can be extrapolated to the particle cen-
troid as u and termed the ‘‘unhindered velocity”. The
relative velocity of the particles (w) is then based on the
unhindered velocity, i.e. along a particle trajectory

wðtÞ � vðtÞ � uðtÞ ð1Þ

It is important to note that u@p does not include the fluid
dynamic effects resulting from the presence of the particle
itself. Assuming that the particle and the far-field velocities
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are steady and the flow is spatially uniform, the dependence
of drag on the magnitude of the relative velocity is primar-
ily dictated by the particle Reynolds number (Rep), defined
as

Rep �
qf jwjd

lf

ð2Þ

In this expression d is the particle diameter, qf is the contin-
uous-phase density, and lf is the continuous-phase viscos-
ity. The low Reynolds number condition is often called the
‘‘creeping flow” condition and leads to a fully attached
laminar flow over the particle and drag as

FD ¼ �3pdlfw ð3Þ

This is often referred to as the Stokes regime owing to his
1851 derivation.

At high Reynolds numbers given by 2000 < Rep <
300,000, a laminar boundary layer will form on the
front of the particle (h = 0�) and will separate at h � 80�
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producing a fully turbulent wake behind the particle. The
drag coefficient (CD) written in terms of the total drag force
is

FD � �
p
8

d2qf CDww ð4Þ

Measurements in the range have shown that CD is approx-
imately constant in this Rep range. This nearly constant va-
lue is called the ‘‘critical drag coefficient” (CD,crit) with a
value of about 0.4 to 0.45. This Rep range is often called
the ‘‘Newton regime”, owing to his assumption of a con-
stant drag coefficient for ballistics. One may quantify the
departure of the drag from the Stokes solution due to Rey-
nolds number with the Stokes correction factor

fRe �
F DðRepÞ

F DðRep ! 0Þ ¼
CDðRepÞ
24=Rep

ð5Þ

For a solid particle, this ratio is unity for Rep ‘‘1 and is
proportional to Rep for the Newton regime (ca. 3000 <
Rep < 200,000). Higher Reynolds numbers correspond to
the supercritical regime, but particles are rarely at such
conditions.

For intermediate particle Reynolds numbers (ca.
0.1 < Rep < 2000), the flow behind the particle changes
from an attached laminar wake, to a separated laminar
wake, to an unsteady transitional and then turbulent wake.
Since there is no general analytical solution for intermedi-
ate Reynolds numbers, the intermediate conditions are gen-
erally prescribed by an empirical expression of the drag
coefficient. A common and reasonably accurate single
sub-critical expression (to within 6% error of the experi-
mental data) for Rep < 2 � 105 is given by Clift and Gauvin
(1970) as

CD ¼
24

Rep

1þ 0:15Re0:687
p

� �� �
þ 0:42

1þ 42;500
Re1:16

p

ð6Þ

The term in square brackets is the commonly known
Schiller-Naumann (1933) drag which is quite accurate for
Rep < 800, and can be written in terms of the Stokes correc-
tion as

fRe ¼ 1þ 0:15Re0:687
p ð7Þ

Note that the drag given by Eqs. (6) and (7) represents the
time-averaged component for Rep > 200, since some force
unsteadiness results from the unsteady separated wake re-
gion. It should be noted that the above results are for an
isolated particle with one-way coupling, which is focus of
this study. However, the presence of finite concentrations
of particles will generally yield significant changes. This
can include two-way coupling (where particles affect the
fluid), three-way coupling (where particles affect each other
through fluid dynamics such as drafting), and four-way
coupling (where particle–particle collisions can be impor-
tant). Generally, void fractions and mass fractions of
0.1% or even less are needed to ensure one-way coupling
alone is reasonable (Elghobashi, 1994).
2. Spherical fluid particles

If the instantaneous Weber number is sufficiently low,
fluid particles are generally spherical in shape. Therefore,
the drag is dependent primarily on the surface conditions
arising from the influence of viscosity ratio (l = lp/lf),
density ratio (q = qp/qf), and surfactants. If the particle
is fully-contaminated, its surface can be considered as a
no-slip condition. In this case, the expressions for a solid
particle are appropriate. However, if the particle is pure,
there is a slip flow along the particle interface which is dri-
ven by internal circulation and the Stokes correction for
internal circulation follows the Hadamard–Rybczynski
result

fl� �
F Dðl�;Rep ! 0Þ

3pdlf w
¼ 2þ 3l�

3þ 3l�
ð8Þ

The purity assumption used above for the Hadamard–
Rybczynski solution indicates that the interface is free of
any surface-active contaminants (surfactants). However,
water interfaces are extremely susceptible to contaminants
especially at small diameters. Herein, we will only consider
clean (or nearly so) and fully-contaminated conditions.

As the Stokes solid-particle drag solution was extended
to include linearized inertial terms by the Oseen expression,
Brenner and Cox (1963) extended the Hadamard–
Rybczynski expression to include inertial terms for a spher-
ical fluid particle. This yields small but finite Rep correction
terms:

fl� ¼
2þ 3l�

3þ 3l�
þ 3

16
Rep

2þ 3l�

3þ 3l�

� �2

þ O Re2
p ln Rep

� �
ð9Þ

As l* approaches1, this expression approaches the Oseen
expression, and in the limit of l* approaching zero (e.g. gas
bubble in a liquid), the linearized drag coefficient ap-
proaches CD = 16/Rep + 2. The linearized expression is
reasonable up until about Rep of unity (as was found for
the Oseen correction).

When the Reynolds number becomes greater than unity,
the above expressions are no longer applicable. As with the
solid-sphere case, the fluid physics change substantially for
large Reynolds numbers, but are also sensitive to l*. As
discussed by Clift et al. (1978), flow separation for a spher-
ical droplet in a gas at l* = 55 or a fully-contaminated
bubble is similar to that of a solid particle since the surface
condition is effectively a no-slip condition. As such, the
drag for both closely mimics that for a solid-sphere, e.g.
to within 1–2%, so that the empirical Schiller-Naumann
expression (Eq. (7)) is appropriate up to Rep of 1000 so
long as there is negligible deformation.

In contrast, a spherical gas bubble in a liquid at l* = 0
with an uncontaminated interface will have internal recir-
culation which eliminates any wake separation of the exter-
nal liquid, at all Reynolds numbers. The lack of separation
fortunately allows closed-form theoretical solutions. In
particular, Levich (1949, 1962) obtained an estimate in
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the limit of high Reynolds numbers (CD = 48/ Rep) based
on the balance of work done by drag and the viscous dissi-
pation in the interior. Moore (1963) extended the theory to
intermediate Reynolds numbers by assuming a thin bound-
ary layer on the surface yielding

fRe�1;l�!0 ¼ 2 1� 2:21ffiffiffiffiffiffiffiffiffi
Re p

p
" #

þ O Re�11=6
p

� �
ð10Þ

The term in the square brackets represents Moore’s correc-
tion to the Levich drag, and this expression was found to
be quite reasonable for Rep as low as 100. To bridge the
gap between the Moore and Hadamard–Rybczynski theo-
retical results, Mei et al. (1994) proposed the following
empirical blended function which tends properly to each
limit

fRe;l�!0 ¼
2

3
1þ 8

Rep

þ 1

2
1þ 3:315ffiffiffiffiffiffiffiffi

Rep

p
 !" #�1

8<
:

9=
; ð11Þ

For a wide range of Reynolds numbers, this expression
shows good comparison with both clean bubble experimen-
tal data (Fig. 1) and resolved-surface simulations (Takagi
and Matsumoto, 1999; Magnaudet and Eames, 2000).

Since flow separation may occur for intermediate values
of l*, analytical solutions are not available at high Rey-
nolds numbers. Therefore, guidance can be taken from
experiments and resolved-surface simulations of Fig. 1.
As with the Hadamard–Rybczynski result, particle drag
was found to monotonically decrease as the viscosity ratio
is reduced. The increment in drag for a clean fluid particle
beyond that of a clean bubble can be normalized by the dif-
ference between the solid-sphere and clean bubble results.
This ratio is defined as Df* which varies from zero to unity
as the particle viscosity ratio increases and can be modeled
in terms of the combined effects of l* and Rep as follows:

Df � � fRe;l� � fRe;l�!0

fRe;l�!1 � fRe;l�!0

¼ mþ 0:01Repð0:4 m� 0:8 m2 þ 1:4m3Þ
1þ 0:01Rep

ð12Þ

The RHS is an empirical expression uses a viscosity ratio
function m � l*/(1 + l*) and is based on the available
data. As shown in Fig. 1, this expression combined with
Eqs. (7) and (11) gives reasonable predictions at least until
a Rep of about 1000, beyond which fluid particles tend to
deform. Similar correlations for the viscosity ratio effect
are given by Clift et al. (1978) and Feng and Michealidis
(2001), which also involve multiple equations. This expres-
sion combined with Eqs. (7) and (11) is yields reasonable
predictions at least for Rep < 1000. At higher Reynolds
numbers, there is no quantitative data available for
spherical fluid particles with intermediate viscosities (e.g.
immiscible drops in a liquid) since they are generally
deformed.
Before addressing the non-spherical fluid particle drag,
we address the effects of contamination at intermediate
Reynolds numbers for spherical particles. The contaminant
influence is a function of the surfactant properties and their
concentration as well as the chemical composition of both
the continuous-phase and dispersed-phase liquid proper-
ties. The effect of the surfactant concentration on the fluid
particle interface can be broadly classified into three
regimes: pure, partially-contaminated, and fully-contami-
nated. The ‘‘pure” condition allows a fully mobile inter-
face with full internal recirculation and corresponds to
hclean = 180�, where hclean is the angle from the leading edge
over which the interface is free of contaminants. As the
concentration on the surface increases, parts of the fluid
particle surface become immobile and the recirculation is
limited to a fraction of the surface (0� < hclean < 180�). This
‘‘partially-contaminated” condition is generally associated
with an increased drag (e.g. reduced terminal velocity).
As the surfactant concentration increases further, the
surface of the fluid particle eventually saturates with sur-
factants representing a ‘‘fully-contaminated” condition
corresponding to hclean = 0�. At this point the surface con-
ditions and terminal velocity of the fluid particle resemble
that of a solid body of the same dimension and are approx-
imately independent of further concentration increases.

Roughly, concentration levels below 10�7 g/l can be
considered pure for most fluid particles, while concentra-
tions above 10�2 g/l can be considered fully-contaminated.
Water is especially susceptible to the influence of surfac-
tants, making it difficult to achieve pure conditions,
especially for small particle diameters. The surfactant prop-
erties of importance include solubility, surface pressure,
cation and organic concentration, molecular weight, etc.
so that generalizations are difficult. For example, water
with a surfactant concentration of 10�3 g/l can be consid-
ered as pure for a 1.55 mm bubble if the surfactant is
Sodium dodecyl sulfate, whereas the same bubble in the
Triton X-100 solution will be considered fully-contami-
nated. Water itself is often classified as tap water, distilled
water or hyper-clean water. Distilled water is obtained by
heating water to form vapor, leaving behind impurities
which have higher boiling points then water. However,
many organic substances are easily dissolved in water and
have similar or lower boiling point then water, making
them notoriously difficult to remove. In order to obtain
further purify water, various filtration systems (deioniza-
tion, reverse osmosis, etc.) and UV light are employed to
extrude surfactants. Even with these techniques, a pure
condition can only be expected for bubbles of diameters
greater then 0.7 mm for hyper-clean water. As a result,
few, if any, researchers have obtained pure conditions for
bubbles with diameters less than 50 lm in water solutions.

For fully-contaminated conditions, the fluid particle will
have a negligible value of hclean and so will follow the rigid
sphere drag coefficient curve due to immobilization of the
interface. Similarly, pure conditions will yield drag coeffi-
cients corresponding to Eq. (12). For partially-contami-
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nated conditions, no analytical solutions are available.
However, Magnaudet and Eames (2000) noted that the the-
oretical variation can be at least qualitatively extended to
higher Reynolds numbers (based on resolved-surface simu-
lations) by assuming the same functional dependence on
the clean bubble angle but using the intermediate Reynolds
number corrections for the clean and contaminated limits.
If we write this relationship for the more general variable
viscosity case it becomes:

fRep;hclean;l� � fRep ;l�

fRep;l�!1 � fRep ;l�

¼
2p� 2hclean þ sin hclean þ sin 2hclean � 1

3
sin 3hclean

2p
ð13Þ

The limits on the LHS ðfRep ;l�!1; fRep;l� Þ can be obtained
from Eqs. (7) and (11) so that knowledge of hclean would
allow computation of the drag correction. While it is
generally difficult to relate hclean to surfactant concentra-
tion, particle and continuous-phase properties, and time
of residence, the expressions of Bel Fdhila and Duineveld
(1996) show reasonable agreement with their experimental
results.
3. Deformed fluid particle shapes and parameters

Dispersed fluid particles (bubbles and drops away from
walls) can deform based on the interplay of surface tension
and the fluid-dynamic stresses on the particle surface.
Thus, the shape of a fluid particle is not permanent and
deforms according to the local stresses imparted by the sur-
rounding environment. The surface tension forces will
always drive a free particle toward a spherical shape,
whereas initial conditions and/or fluid-dynamic forces are
the primary sources of non-sphericity. Fluid particle shapes
which are mild deviations from the spherical case are gen-
erally a spheroid. The aspect ratio of spheroids can be
defined as the ratio of the diameter along the axis of sym-
metry to the diameter about the axis of symmetry, i.e.
E ¼ dk=d?. Most spheroidal fluid particles are oblate
(E < 1). This ellipsoidal shape reasonably describes the ini-
tial deformations that occur for air bubbles in water and
water drops in air at terminal conditions (Fig. 2).

3.1. Relationship between Weber number and shape

The importance of the fluid surface stresses on particle
deformation tends to scale with the dynamic pressure seen
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by the particle since it is the surface pressure distribution
and surface tension which control the deformation. This
pressure distribution, in turn, can be characterized by the
viscosity ratio (which controls recirculation) and the Rey-
nolds number (which controls importance of viscosity).
However, the deformation is also related to the surface ten-
sion and is thus influenced by the Weber number, which is
the ratio of continuous-fluid stresses (which cause deforma-
tion) to surface tension stresses (which resist deformation):

We ¼ qfw
2d

r
ð14Þ

where r is the surface tension between the particle fluid and
that of the surrounding fluid.

The influence of these various parameters on both shape
and drag has been investigated theoretically by many
researchers with perhaps the most important results given
by Saito (1913), Taylor and Acrivos (1964), and Moore
(1965). Saito examined the creeping flow limit of Rep� 1
(where inertial terms are neglected), and showed that a
fluid particle of any viscosity ratio and Weber number will
remain spherical. This criterion can be qualitatively
expressed as

Rep � 1 particles rapidly tend to spherical geometry

ð15Þ
To quantify this relationship, one may suggest that fluid
particles are spherical for Rep < 0.1. Experimentally ob-
served shapes at such Reynolds numbers are at least qual-
itatively consistent with this result. For example, the data
of Pan and Acrivos (1968), Grace (1973), Grace et al.
(1976), and Bhaga and Weber (1981) suggest approximate
criteria of Rep < 0.2 for clean bubbles and Rep < 0.5 for
contaminated bubbles and drops (Fig. 3).
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Fig. 2. Terminal velocities of water drops in air from Beard (1976) and air bu
Taylor and Acrivos extended this condition to small but
finite Rep values by retaining but linearizing the convection
terms. For this condition, they noted that deformation is
principally controlled by Weber number, and that theoret-
ical onset of ellipsoidal condition (E 6 0.9) occurs at
We = 0.64 for clean bubbles. At very high Reynolds num-
bers, Moore analyzed gas bubbles and found that onset of
ellipsoidal shapes occurs at We = 0.79. These results are
also consistent with experiments, which also showed that
very large Weber numbers coincide with highly-deformed
bubbles and drops. In summary, the degree of deformation
at finite Rep can be qualitatively expressed as

We� 1 particles rapidly tend to spherical geometry

We � 1 moderate deviations from a sphere can occur

We� 1 large deviations from a sphere can occur

ð16Þ
These trends are consistent with measurements for a wide
range of Reynolds numbers (from 1 to 10,000) based on
the above cited data and those to be presented herein.
The general shape transition for these conditions at termi-
nal velocity is shown in Fig. 4 for the case of buoyant bub-
bles and drops in a liquid (also see Figs. 2 and 3). In all
cases, the weakly deformed condition corresponds to an
oblate spheroid.

For bubbles (q*� 1 and l*� 1), an increase in Weterm

will lead to a flatter aft portion (bottom) as shown in Fig. 4.
This is due to a combination of buoyancy and flow recircu-
lation effects which tend to yield a uniform pressure sepa-
ration region that causes the rear interface to become
nearly horizontal when surface tension is weak. For
Rep,term > 100, large deformations lead to a ‘‘spherical-
cap” bubble with a hemi-spherical shape on the top and
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a flat surface on the bottom. The aft surface will generally
be unsteady, due turbulence in the wake. At very high
Weber number, such bubbles can be difficult to initiate
and will tend to break up in unsteady flows. At moderate
Reynolds numbers (ca. 40 < Rep < 100), the wake produces
an approximately steady recirculation pattern with a steady
aft interface, but disk-like shapes are also possible. At very
high Weber numbers (>100), the bubble can form a skirt
which extends downward from the spherical cap portion
partially enclosing the wake. At yet lower Reynolds num-
bers (ca. Rep < 40), the oblate ellipsoidal shape will transi-
tion into an oblate ellipsoidal cap which can include a
dimple on the aft end.

For droplets in a gas (q*� 1 and l*� 1), increasing
Weber number will transition the shape from a sphere
to an oblate spheroid, similar to that seen for a bubble.
However, the experimentally observed criterion for onset
of ellipsoidal shapes is We > 2 for water drops in air, com-
pared to We > 0.8 for clean bubbles. This indicates that
drops in gas are less readily deformed for a given dynamic
pressure, which can be attributed to their reduced internal
circulation. In comparison, the strong re-circulation in a
clean bubble yields surface pressure distributions closer
to that of the inviscid potential flow with higher pressures
in the rear and lower pressures at the sides for a given
dynamic pressure (as compared to that for a sub-critical
solid-sphere at the same Rep). This translates into higher
deformations for bubbles as compared to drops for a
given Weber number. This also explains why contami-
nated bubbles exhibit less deformation than pure bubbles
(Fig. 3). The differences in pressure distribution also
impact shapes, e.g. the upstream portion is flatter for a
drop in a gas but the aft portion is flatter for a bubble
in a liquid (Clift et al., 1978). Such an interface is more
susceptible to Rayleigh–Taylor interface instabilities than
the rounded leading-edge surface of the spherical cap bub-
ble. As a result, the bottom surface of drops in a gas will
tend to form a dimple that can grow substantially. Even-
tually, a ‘‘bag” shape will be formed whereby the middle
of the drop is hollowed out yielding a parachute shape
which is highly unstable and will lead to break up. Taylor
(1949) defined a critical Weber number that indicates the
maximum stable size in quiescent conditions and is given
by
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Wecrit 	 12 ð17Þ

For highly unsteady flow, the critical Weber number can be
reduced (ca. 8 in turbulence). Depending on the flow
dynamics, one may also observe a variety of other break-
up modes, e.g. vibrational, shear, stripping, and shattering
(Theofanous et al., 2004).

3.2. Terminal velocity parameters

In the above discussion, Weber number and Reynolds
number were employed to describe the shape changes.
While this is consistent with theoretical developments, such
parameters can be difficult to measure or specify a priori.
Because of this many experimentalists instead use the Bond
number (Bo) and the Morton number (Mo) to characterize
shapes at terminal velocity (wterm). The Bond (or Eötvös)
number is proportional to particle volume

Bo ¼
gd2jqp � qf j

r
ð18Þ

This parameter represents the ratio of effective gravita-
tional forces to surface tension forces, where the former
is proportional to the density difference between the phases
and the gravitational acceleration. Note that the effective
gravitational force itself does not cause deformation, e.g.
a bubble which is initially released at zero velocity will have
little deformation even if the Bond number is high. How-
ever, once such a bubble reaches terminal velocity, the
effective gravitational forces are exactly balanced by drag,
which in turn controls the relative velocity and thus the dy-
namic pressure that causes deformation. Thus, high Bond
numbers are qualitatively similar to high Weterm.

The Morton number is a characteristic of the multi-
phase fluid properties including viscosity and is given by

Mo ¼
gl4

f jqp � qf j
q2

f r
3

ð19Þ

This parameter has no direct physical interpretation, but is
conveniently independent of the particle velocity or size. As
such, specifying Mo and Bo does not require measurement
of the particle velocity or prediction of the drag coefficient
yet it allows a combination of the dynamic parameters to
be specified since these four parameters are related at,
but only at, the terminal velocity condition:

We2
term=Re4

p;term ¼Mo=Bo ð20Þ

There are additional reasons why the Bo and Mo set are
more straightforward to specify in experiments. In particu-
lar, it is straightforward to conduct measurements with Mo
fixed while varying Bo (by simply changing particle size) or
to keep Bo fixed and change Mo (by simply changing fluid
viscosity). Similar controls are difficult to do with the We
and Rep parameter set. Furthermore, the gravitational ef-
fects associated with Bo and Mo help specify the hydro-
static pressure gradients at terminal conditions which
influence the fore-aft shape asymmetries, i.e. non-ellipsoi-
dal shapes which can occur at large deformations. Because
of the experimental convenience, there are a wide variety
correlations based on the static parameters of Bond num-
ber and/or Morton number, e.g. Harmathy (1960), (Wallis,
1974), Beard (1976), Clift et al. (1978), Ishii and Chawla
(1979), Tomiyama (1998), Raymond and Rosant (2000),
and Tomiyama et al. (2002)s. Such formulas are helpful
to determine the terminal shape and velocity for a given
multiphase system and particle size.

However, a limiting aspect of such correlations for
shape or drag is that they can only be used to define the
equilibrium conditions, i.e. when w = wterm. This is because
Bo and Mo are not based on a relative velocity and are
instead based on the gravity and a density difference. As
such Mo and Bo can be considered ‘‘static” or ‘‘equilib-
rium” parameters. In contrast, We and Rep are indepen-
dent of gravity or the density difference and instead are
functions of the relative velocity, and so can be considered
‘‘dynamic” parameters. One hybrid parameter is the
Tadaki number which is equal to RepMo0.23. This parame-
ter can be considered quasi-dynamic since it includes a
velocity, and perhaps because of this has been shown to
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generally better than conventional ‘‘static” parameters in
correlating bubble and drop shapes at terminal velocities.
However, it’s incorporation of gravity and a density differ-
ence indicates that its use is limited to equilibrium condi-
tions, e.g. it would not be appropriate to describe droplet
deformation caused by a high-speed horizontal injection.

In computational fluid dynamics, one generally wishes
to obtain the shape and drag of fluid particles at both equi-
librium and non-equilibrium conditions. This requires the
use of dynamic parameters to describe the instantaneous
relevant physics. To accomplish this, deformation and drag
correlations have been developed herein based on We and
Rep, and is the principle contribution of this study.
Another reason for choosing these parameters is that we
wish to make quantitative comparison with the above cited
theories.
4. Aspect ratios for clean bubbles

To analyze uncontaminated fluid particles, Taylor and
Acrivos (1964) considered the geometry of deformation
under the assumptions of clean conditions, linearized iner-
tial terms, and small deformations. They obtained a first-
order solution for particle shape and showed that the initial
deformation is consistent with that of an oblate spheroid.
The resulting aspect ratio can be expressed in terms of
the particle Weber number (We) and a viscosity ratio func-
tion ðkl� Þ as

E ¼ 1� 2kl�We
1þ kl�We

	 1� 3kl�We ð21aÞ

kl� ¼
1

16 l� þ 1ð Þ3
81

80
l�3 þ 57

20
l�2 þ 103

40
l�

�

þ 3

4
� q� � 1ð Þ l� þ 12ð Þ

12

�
ð21bÞ

The viscosity function does not vary significantly, i.e. kl�

ranges from 0.052 for a bubble in a liquid (l* ? 0) to
0.063 at for a high viscosity drop in a gas (l* ?1). A cor-
rection to Eq. (21a) was also obtained by Taylor and Acri-
vos by including additional terms of order We2/Rep. The
result indicated that larger deformations will give rise to
non-symmetric shapes tending toward a spherical cap.
The overall aspect ratio for this higher-order theory
(assuming small Weber number) becomes:

E 	 1� 3kl�We 1þ 2 11l� þ 10ð Þ
7 10l� þ 10ð Þ

We
Rep

� �
ð22Þ

The term in the square brackets indicates the higher-order
correction.

Quantitative comparisons of the aspect ratio at rela-
tively low Reynolds numbers (0.2 < Rep 6 2) against data
of clean bubbles (l* ? 0) from experiments and resolved-
surface simulations are shown in Fig. 5. The aspect ratio
predicted by the Taylor–Acrivos theory (Eq. (21a)) is rea-
sonable for all these Reynolds numbers up to We < 0.5,
beyond which it tends to over-predict the deformation.
This is consistent with detailed shape comparisons by
Ryskin and Leal (1984). The higher-order Taylor–Acrivos
theory (Eq. (22)) is also shown for Rep = 1 and is reason-
able within its theoretical limits of Rep� 1 and We2/
Rep� 1. At higher Weber numbers, the aspect ratio tends
to reach a constant minimum value (Emin = EWe ? 1). The
minimum aspect ratio can be difficult to determine since
there is scatter in the measurements (since instabilities
can arise) and the simulations (attributed to the computa-
tional complexity of handling large deformations). How-
ever, an approximate correlation for the aspect ratio of
uncontaminated bubbles can be constructed as

E ¼ 1� ð1� EminÞ tanhðcEWeÞ ð23Þ

Based on data for pure bubble systems over a range of Rey-
nolds numbers from 0.2 to 5000 (shown in this and in the
following plots), Emin and cE can be modeled as

Emin ¼ 0:25þ 0:55 expð�0:09RepÞ ð24aÞ

cE ¼ 0:165þ 0:55 expð�0:3RepÞ ð24bÞ

Comparison with Rep = 1 is shown in Fig. 5 where the fit
approaches that of the Taylor–Acrivos theory at low
Weber numbers, and higher Rep conditions will be shown
in the following figures.

There are three main points regarding this result. Firstly,
the number of data points available for these conditions is
rather small since deformation at these Reynolds numbers
requires extremely viscous liquids and is generally weak,
and since much of the experimental data in the literature
did not include measurements of the relative velocity
needed for determine the Weber number. Even when the
relative velocity could be extracted, it was sometimes asso-
ciated with measurement uncertainty which (along with
potential effects of contamination) contributed to the scat-
ter of the data. As such, the empirical aspect ratio equation
given above may only be approximate for high Weber
numbers and low Reynolds numbers. Secondly, creeping
flow conditions will generally yield only weak or negligible
deformation, i.e. Emin � 1 for Rep < 0.1 (Eq. (15)). Thirdly,
the above expressions assume that the shape is a function
of the local We and Rep and is not undergoing unsteady
deformation. For most flows, this is a reasonable assump-
tion since the natural frequency of the bubble shape oscil-
lations is on the order of several kHz (for diameters of
20 cm or less) so that the shapes adapt almost immediately
to the local flow conditions.

For moderate Reynolds numbers (ca. 1 < Rep < 100),
there is no theoretical solution for the aspect ratio and
instead empirical expressions must be employed. For these
conditions, Bhaga and Weber (1981) conducted experi-
ments of deforming bubbles in high-viscosity uncontami-
nated liquids (0.004 < Mo < 850) and concluded that
bubble shape is primarily a function of Rep (and not
We). However, experiments and simulations (Ryskin and
Leal, 1984; Kojima et al., 1968; Raymond and Rosant,
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2000) have shown that Weber number effects are also
important. Results from these studies are shown in Fig. 6
along with the fit of Eq. (23). While there is some scatter,
the data for a given Reynolds number tend to collapse as
a function of Weber number with an initial trend similar
to that of the Taylor–Acrivos theory followed by a leveling
off at Emin (all of which tends to follow the empirical fit).
As in Fig. 5, the value of Emin decreases as the Reynolds
number increases. This is attributed to the increased impor-
tance of inertia terms which cause further deformation by
creating a high pressure on the front and rear and a low
pressure on the sides. However, the aspect ratio only
describes a gross feature of the bubble shape since the
shape is no longer spheroidal at high deformations. For
example, the bubble trailing-edge forms a dimple at Rep

of about 3 which peaks in magnitude at Rep of about 40
and then disappears at Rep of about 100 (Bhaga and
Weber, 1981; Ryskin and Leal, 1984). Furthermore, the
data in Fig. 6 exclude the disk and skirted bubble shapes
which occur at We > 100 for this Rep range (Clift et al.,
1978).

At high Reynolds numbers, Moore (1965) obtained the-
oretical deformations for clean bubbles at low Weber num-
bers. In particular, he assumed that the viscous flow over
the bubble was confined to a thin boundary layer which
remains attached. Blanco and Magnaudet (1995) con-
ducted several simulations and showed that the boundary
between attached and separated wakes for deforming clean
bubbles is a function of Rep and E as shown in Fig. 7. This
figure also includes two sample streamline simulations on
either side of this boundary, whereby the larger We condi-
tion yields a wake vortex. The data of the terminal velocity
conditions for air bubbles in hyper-clean water of
Duineveld (1995) indicate that the flow may be attached
for E as low as 0.55, consistent with observations by
Moore.

Moore’s low order theory for deformation is based on a
pressure distribution arising from irrotational flow over a
stress-free spherical surface. Assuming a small Weber num-
ber, this yields an oblate spheroid with an aspect ratio:

1

E
¼ 1þ 9

64
We ð25Þ

Moore also obtained a higher-order approximation by
employing the potential flow solution over an oblate ellip-
soid (Lamb, 1945) which resulted in an implicit relation-
ship for aspect ratio as a function of Weber number

We ¼ 4E1=3ð1þ E2 � 2E3Þ
ð1� E2Þ3

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E�2

p
� cos�1 E

� �2

ð26Þ

For moderate deformations (E > 0.5), this relationship can
be approximated explicitly as

1

E
	 1þ 9

64
We� 0:0089We2 þ 0:0287We3 ð27Þ

The average difference between this result and Eq. (26) is
0.3% for E > 0.5, so that Eq. (27) is generally reasonable
for the entire attached flow regime (Fig. 7).

Predictions of aspect ratio as well as results from exper-
iments and RSS for Rep P 100 are shown in Fig. 8. The
results indicate that both the low-order theory (Eq. (25))
and the high-order theory (Eqs. (26) or (27)) are quite rea-
sonable for small We, consistent with Moore’s assump-
tions. It is interesting that the experimental and RSS
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results for E tend to be bounded by the two theories at
moderate Weber numbers, but then tend to a minimum
value independent of Rep. Also shown in Fig. 8 is the
empirical relationship for the aspect ratio in this regime
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based on Eq. (23). This corresponds well with Moore the-
ory at low We values, though the aspect ratio of bubbles
in water tends to be somewhat over-predicted by the empir-
ical result. This may be due to the difficulty of obtaining a
completely uncontaminated surface for water as discussed
above.

Note that the theories are no longer suitable for E < 0.5
since they do not account for the open-wake which devel-
ops and since they predict E ? 0 as the surface tension
becomes weak. In practice, bubbles with E < 0.5 differ sub-
stantially from an ellipsoid (as the fore-aft symmetry is bro-
ken) and at maximum-deformation tends toward an
(approximate) universal minimum given by Eq. (23), i.e.

EWe!1 � 0:25 for Rep > 100 ð28Þ

This limit is consistent with oblate spherical-cap bubbles
and has been pointed out by several researchers for high
Rep conditions (Clift et al., 1978). While there has not been
success for a direct quantitative theoretical prediction of
Eq. (28), the interface geometry can be qualitatively ob-
tained at terminal velocity conditions by neglecting surface
tension and viscosity. In particular, the spherical segment is
consistent with a nearly inviscid pressure distribution bal-
anced by hydrostatic pressure variations while the nearly
0
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Fig. 8. Aspect ratios at high particle Reynolds n
flat aft end of the bubble is consistent with the air pressure
equal to local hydrostatic pressure. As such, the fore-aft
(non-ellipsoidal) asymmetry in terminal conditions is re-
lated to hydrostatic pressure (and not just hydrodynamic
pressure). However, Eqs. (22), (23) and (27) can take this
effect into account since Weterm and Rep,term specify the
Bo and Mo though Eq. (20) and CD,term.

Since the above correlations are functions of the instan-
taneous Weber number, they would be expected to be
appropriate at velocity conditions which are not necessarily
the mean rise velocity. To test this, predictions of aspect
ratio were compared to experimental data of bubbles rising
in clean water whereby the trajectory oscillations lead to
relative velocity variations. Sample comparisons are shown
in Fig. 9 where the agreement is reasonable though the var-
iation amplitude tends to be somewhat predicted.
5. Drag of deformed clean bubbles

Increasing the bubble or drop size at terminal conditions
(as in Fig. 2), will result in an increase in Rep, which by
itself is known to reduce CD for a spherical shape, e.g.
via Eqs. (7) or (11). However, if this increase in size also
corresponds to a transition to an ellipsoidal shape, the
10 100
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umbers (>100) for uncontaminated bubbles.
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increase in frontal area and an increased probability of
wake separation will cause an increase in CD for a given
Rep. As shown in Fig. 10, the combined result of these
two effects can be either an increase or a decrease in CD,term

depending on the type of fluid particle. For example, the
onset of deformation with increasing Rep,term shows a rapid
rise in CD,term for clean bubbles but an initial decrease for
contaminated bubbles. In the following, these two compet-
ing effects will be separated by considering the impact of
Weber number for a fixed particle Reynolds number, con-
sistent with theoretical approaches.

There are three limiting conditions where drag can be
theoretically obtained for clean fluid particles: (a) linear-
ized inertia and small deformation (Rep� 1,We� 1), (b)
bubbles with thin boundary layers, attached wake and
small deformations (Rep� 1,We� 1), and (c) spherical-
cap bubbles with a separated wake (Rep� 1,We� 1).
Each is discussed in the following, and then later are used
for a generalized bubble (and droplet) drag for arbitrary l*,
Rep and We.

Including only linearized inertial terms, Taylor and Acri-
vos (1964) used the low Rep theoretical deformation of Eq.
(20) to obtain the drag for an oblate spheroid along the axis
of symmetry. To do this they extended the spherical stream
function work of Proudman and Pearson (1957) by assum-
ing small departures from a spherical shape. From the
stream function solution, the friction and form drag could
be obtained. Neglecting terms of order Re2

p ln Rep, their
result can be expressed in terms of the Stokes correction
factor as
fk ¼
2þ 3l�

3þ 3l�
þ 3

16
Rep

2þ 3l�

3þ 3l�

� �2

þ kl�We
6

5

� ð8þ 3l�2 � l�Þ
ð3þ 3l�Þ2

ð29Þ
The first two terms on the RHS are the corrections ob-
tained for spherical fluid particles in linearized flow (Eq.
(9)) while the last term is due to deformation. At low Rey-
nolds numbers (where the second term is neglected), the
Stokes correction approaches f = 2/3 + 0.055 We for bub-
bles (l*� 1) and f = 1 + 0.025 We for drops in a gas
(l*� 1), indicating that bubbles are more sensitive to
deformation changes than are drops. In either case, signif-
icant changes occur for Weber numbers greater than 0.1.

Drag for the second condition (an attached boundary
layer over the entire bubble surface with weak deforma-
tion) was obtained by Moore (1965) by assuming an oblate
ellipsoid with the aspect ratio given by Eq. (26). The (outer)
potential flow solution was obtained (assuming inviscid
flow) to find the dissipation associated with a thin bound-
ary layer consistent with the stress-free condition. From
this, the drag can be obtained to order Re1=2

p as

CD;Moore ¼
48

Rep

GE 1� 2:21H E

Rep

� �
ð30Þ
The parameters GE and HE are functions of the aspect ra-
tio. The first can be given directly as
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GE ¼
E�7=3

3
ð1� E2Þ3=2 E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2
p

þ ð1� 2E2Þ cos�1 E

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2
p

� cos�1 E
� �2

ð31Þ

This function can also be approximated for E > 0.5 (at-
tached flow conditions) as

GE 	 0:1287þ 0:4256

E
þ 0:4466

E2
ð32Þ

The second function must be numerically obtained and a
table of values is given by Moore (1965); though a more
convenient approximation for E > 0.5 is

H E 	 0:8886þ 0:5693

E
� 0:4563

E2
ð33Þ

The drag of Eq. (30) reverts to the spherical form (Eq. (10))
as E approaches unity, i.e. GE ? 1 and HE ? 1. Moore
also points out that the contribution of HE becomes negli-
gible at sufficiently high Rep values, though this requires
Mo on the order of 10�14 or less for terminal conditions.
Note that these results are unreasonable for conditions of
flow separation (Fig. 7), an issue which will be addressed
below.

The third theoretical result (Davies and Taylor, 1950) is
for a spherical-cap bubble for which surface tension
boundary layer effects can be ignored and the bubble Rey-
nolds number is high. The latter aspect allows the pressure
just above the spherical-segment of the bubble to be
approximated from potential theory, which must be bal-
anced by the hydrostatic effect yielding

CD ¼
8

3
for We!1 and Rep !1 ð34Þ

This well-known Davies and Taylor result has been found
to reasonably represent drag on spherical-cap bubbles at
high Rep (Clift et al., 1978). Joseph (2006) extended this re-
sult in manner similar to Moore (1965) to include viscous
effects yielding:

CD ¼
8

3
þ 14:24

Rep

for We!1 and Rep � 1 ð35Þ

However, the additional term is generally less than 1% for
most spherical cap bubbles as they occur at high Rep val-
ues, so that Eq. (34) is often reasonable. As will be dis-
cussed later, there is experimental evidence that CD 	 8/3
is also reasonable for disintegrating drops as We ?1
(Simpkins and Bales, 1972) and may thus be reasonable
at all viscosity and density ratios at high Rep conditions.

To bridge wide range of small to large Reynolds num-
bers, Darton and Harrison (1974) and Clift et al. (1978)
proposed an empirical expression for the maximum-defor-
mation CD by linearly combining the creeping flow drag of
Eq. (19) with the Rep� 1 drag of Eq. (34):

CD;max ¼ CD;We!1 	
8

3
þ 24

Rep

2þ 3l�

3þ 3l�

� �
ð36Þ
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The above theoretical results and the empirical result of
Eq. (36) are evaluated with experiments and direct simula-
tions of bubble drag coefficient as shown in Fig. 11 for var-
ious Rep values as a function of Weber number. As may be
expected, the Taylor–Acrivos theory is reasonable for
Rep < 1 and We < 1, but tends to overestimate the drag
for higher Rep or We. As also expected, the Moore theory
is reasonable for We < 4 and Mo = 4.45E-10 (which corre-
sponds to Rep > 100 and E > 0.5). However, it underesti-
mates the drag at higher Weber numbers, which can be
attributed primarily to the onset of a separated wake. At
We� 1 for this condition, the drag coefficient tends to ap-
proach an equilibrium value consistent with the spherical-
cap theory of Eq. (34). For Rep values as low as 2, Eq.
(36) gives a remarkably robust prediction of the maxi-
mum-distortion drag coefficient.

To correlate the drag at intermediate Rep and We val-
ues, a normalized drag coefficient increment can be defined
(similar to that used in Eq. (12)) as

DC�D �
CD � CD;We!0

CD;We!1 � CD;We!0

ð37Þ
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Fig. 11. Drag coefficients of uncontaminated bub
For clean bubbles, CD,We?0 is given by the spherical case
of Eq. (11) whereas CD,We?1 is given by the spherical-
cap case of Eq. (36). When plotted as a function of We,
data from experiments and RSS can be primarily grouped
in terms of Rep > 100 and Rep < 100.

Considering first the category of Rep > 100, one can
employ Moore’s theory (Eqs. (30) and (23)) to obtain the
drag increment at moderate Weber numbers. This gives
good predictions for the attached flow region for liquids
of various Morton numbers (Fig. 12). For the separated
regime, Mendelson (1967) noted that the terminal velocity
was approximately independent of Rep and instead domi-
nated by surface tension and gravitational effects. He then
considered the bubble as an interfacial surface wave distur-
bance and equated the wavelength to the bubble perimeter
to obtain the terminal velocity as wterm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=qfd þ gd=2

p
.

This result can be expressed in terms of the terminal Weber
number for a bubble as
CD;term ¼
8

3

Weterm � 2

Weterm

� �
ð38Þ
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bles at low to moderate Reynolds numbers.
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Clift et al. (1978) and Fan and Tsuchiya (1990) considered
minor variations of this expression (e.g. the value of 2 was
replaced by 3 or other numbers). Another, and perhaps
better, empirical correlation (as shown in Fig. 12) for this
separated regime is given by

DC�D; separated 	 2:5 tanhð0:2WeÞ � 1:5 ð39Þ

A shown in Fig. 12, the separated drag is appropriate for
We > 5 while the Moore drag is appropriate for We < 3.
For intermediate conditions (3 < We < 5), a simple approx-
imation is to use the maximum value:

CD 	 maxðCD;Moore;CD;separatedÞ for Rep > 100 ð40Þ

This combination gives good predictions as shown in
Fig. 12. Note that the demarcation between the attached
and separated regimes is responsible for the peak in termi-
nal velocity seen in Fig. 2 for bubbles in distilled water.

Measurements and RSS results for the intermediate Rep

condition of 5 < Rep < 100 are shown in Fig. 13 where it
can be seen that they approximately collapse as a single
function given by

DC�D 	 tanhð0:021We1:6Þ for 5 < Rep < 100 ð41Þ

There is significant scatter in the data and potentially an
additional influence of viscosity associated with variations
of Rep or Mo such that this correlation may be considered
qualitative. However, the relative change in drag in this re-
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Fig. 12. Incremental drag coefficient for uncontaminated bubbles at high Re
(1953), Tadaki and Maeda (1961), and Duineveld (1995).
gime (DCD/CDmax) can be small, e.g. about 30% at Rep=5.
As such any scatter in CD will be exaggerated when consid-
ered in terms of DC�D at these conditions.

For Rep < 5, the Taylor–Acrivos theory initially applies
at small We but soon after the drag coefficient saturates at
the maximum-deformation value which is typically only a
few % higher than the spherical value (see Fig. 13). It is dif-
ficult to assess an appropriate DCD for Rep < 5 because: (a)
the CD variations are small, (b) shapes may be sensitive to
initial conditions and (c) the experimental data are scant
(Fig. 11). However, Eq. (41) is at least qualitatively correct.
To overview the performance of the above methods, the
measured drag coefficients for a variety of liquid are shown
in Fig. 14 based on:

CD;term ¼
4

3

Bo

We
¼ 4

3
Mo

Re4
p;term

We3
term

ð42aÞ

This figure also shows the results of Eqs. (40) or (40) com-
bined with Eqs. (11) and (36) via Eq. (37), i.e.

CD ¼
24

Rep

fRe;l�!0 þ DC�DðCD;We!1 � CD;We!0Þ ð42bÞ

These predictions are generally accurate and robust indi-
cating that drag of clean bubbles which are deformed by
relative velocity can be reasonably characterized by dy-
namic parameters such as We and Rep.

Shows measured terminal drag coefficients for a wide
variety of liquids processed according to:
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e

Re=100 RSS (R&L)
Mo=8E-7 (T&M)
Mo=2.41E-9(H&M)
Mo=4.45E-10 (H&M)
Mo=2.56E-11 (Duineveld, H&M)
Mo=9.5E11-11(T&M)
Moore theoryfor Re=100
Moore theory(Mo=4.45E-10)
Moore theory(Mo=2.56E11)
Separated flow fit
Mendelson equation (Re»1)

ynolds number (Rep > 100) based on data from Haberman and Morton



0.1

1

10

100

0.1 1 10 100 1000 10000

Re

C
D

Mo=771 (B&W)
Mo=55.5 (B&W)
Mo=1.4 (R&R)
Mo=1.03 (B&W)
Mo=0.023 (R&R)
Mo=9E-4 (R&R)
Mo=2.5E-4 (T&M)
Mo=8E-7 (T&M)
Mo=2.41E-9 (H&M)
Mo=4.45E-10 (H&M)
Mo=9.5E-11 (T&M)
Mo=2.56E-11 (Duineveld,H&M)

Clean spherical bubble (We=0)
Present fit

CDmax (We=∞)

Fig. 14. Terminal drag coefficients for various Morton numbers of uncontaminated bubbles.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

We

ΔC
D

*

Mo=0.023 (R&R)
Mo=9E-4 (R&R)
Mo=2.5E-4 (T&M)
Mo=8E-7 (T&M)
Rep = 10 RSS  (Tagaki et al.) 
Rep = 50 RSS (Tagaki et al.)
Present fit (5<Rep<100)
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CD;term ¼
4

3

Bo

We
¼ 4

3
Mo

Re4
p

We3
ð42Þ

The predictions of Eqs. (11), (36), (39) and (40) are generally
accurate and robust indicating that drag of pure bubbles
(deformed by relative velocity) can be reasonably character-
ized by dynamic parameters such as We and Rep.

6. Aspect ratios and drag for drops in a gas

For quasi-steady conditions, one can expect the shape of
a drop in a gas to be dominated by the instantaneous Weber
number. Unfortunately, there is no quantitative theory for
deformation (or drag) for drops in a gas. This is because
the flow over the surface is generally separated since the
high-viscosity ratio results in nearly a no-slip boundary con-
dition and since deformation typically occurs at Rep > 1000
(Fig. 2). As such, one must rely upon empirical correlations.
Experiments for drops of different liquids in different gas
pressures were carefully studied by Reinhart (1964). While
he developed a Bond number correlation, the resulting
aspect ratios correlate well with Weber number as shown
in Fig. 15 and can be characterized by the empirical fit

E ¼ 1� 0:75 tanhð0:07WeÞ for We < Wecrit ð43Þ
While this is not intended for We > Wecrit, photographs of
drops which are disintegrating due to shock waves at very
high Weber numbers (>1000) indicate an instantaneous
lenticular shape with surface stripping with a main body as-
pect ratio of approximately 1/4, consistent with the limit of
this correlation (Simpkins and Bales, 1972; Theofanous
et al., 2004).

The normalized drag increment (based on Eqs. (6), (36),
(37)) for a drop in a gas corresponds well with the
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Fig. 15. Aspect ratio for deformable drops in air for Rep
dimensionless group WeRe0:2
p as shown in Fig. 16. Note that

the 0.2 exponent was empirically determined to give best
data collapse and that this group can be rewritten in terms
of the We, q*, l*, and the Ohnesorge number (ratio of
viscous stresses to surface tension stresses). The data
trends can also be approximated with the following
dependence:

DC�D 	 3:8� 10�3 WeRe0:2
p

� �
þ 3� 10�5 WeRe0:2

p

� �2

þ 9� 10�7 WeRe0:2
p

� �3

ð44Þ

This increment only applies to We < Wecrit (since it be-
comes unbounded for We ?1), while the drag of drops
disintegrating by shock waves is better correlated with
Eq. (34) (Fig. 17). As such, there may be an instantaneous
drag increment for intermediate We as suggested by the
dashed line of Fig. 16, but there is insufficient data for
quantitative determination. To summarize the drag coeffi-
cient prediction for drops in gas, Fig. 17 presents data
and predictions for falling drops (based on Eq. (44)) and
disintegrating drops (based on Eq. (36)), where it is seen
that the expressions are reasonably robust for a wide range
of conditions (400 < Rep < 7000).

7. Aspect ratios and drag for contaminated bubbles and drops

in liquids

Like drops in a gas, contaminated bubbles and drops in
liquids yield a separated wake for even modest Rep values
so that no theoretical solutions for the deformation and
drag are available, and again we must rely upon experimen-
tal evidence and empirical correlations. For the aspect ratio
10 100

e

Glycerin drops in air
Iso-Octane drops in air
Ortho-Toluidin drops in air
Hexadecan drops in air
Water drops in air
Present Fit

ecrit~12

> 600 based on experimental data of Reinhart (1964).
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Fig. 17. Drag coefficient as a function of Reynolds number for terminal conditions (see legend in Fig. 16) and for disintegrating drops (Simpkins and
Bales, 1972).

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

We Re p
0.2

ΔC
D*

Water (1 atm)
Glycerin drops (4 atm)
Glycerin drops (2 atm)
Glycerin drops (1 atm)
Iso-Octane drops (1 atm)
Ortho-Toluidin drops (4 atm)
Ortho-Toluidin drops  (2 atm)
Ortho-Toluidin drops (1 atm)
Ortho-Toluidin drops (0.5 atm)
Hexadecan drops (4 atm)
Hexadecan drops (2 atm)
Hexadecan  drops (1 atm)
Present Fit
Disintegrating Drop

Wecrit~12

Fig. 16. Incremental drag coefficient ratio for drops in air at various pressures (Reinhart, 1964).
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trends, there is reasonable correlation with Weber number
for a wide variety of drop and bubble conditions as indi-
cated in Fig. 18, whereby the results can be approximated
(ca. within ±5%) as
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E ¼ 1� 0:75 tanhð0:11WeÞ ð45Þ
This Weber number dependence is qualitatively similar to
the results for other fluid particle cases in that the minimum
aspect ratio tends to 0.25. However, there are some signifi-
cant differences which can be gleaned by comparing Fig. 18
to Figs. 8 and 15. Firstly, deformations for contaminated
fluid particles are less sensitive to Weber number as com-
pared to pure bubbles in a liquid. This effect can be partially
attributed to the increased velocity and, therefore, lower
pressure at the sides of bubbles for stress-free (vs. no-slip)
boundary conditions. A second difference is that deforma-
tion for drops in liquids is more sensitive to Weber number
than that for drops in a gas. This effect may be related to dif-
ferences in q* whereby drops in a liquids are not as influ-
enced by hydrostatic pressure gradients, a trend which is
similar to that predicted for low Rep conditions Eq. ((20)).

A third difference is that pure and contaminated bubbles
can achieve steady-state spherical-cap shapes at high We
values, whereas drops in liquids and drops in gas tend to
break up by a Wecrit of about 12. This effect is attributed
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Fig. 18. Aspect ratios of contaminated drops and bubbles in a liquid for Rep > 8
et al. (1967), Tsuge and Hibino (1977), and Tomiyama et al. (2002).
to differences in q* since droplet mass undergoing asym-
metric shape oscillations has substantial inertia moving in
different directions which can more easily overcome the
restoring surface tension. In contrast, the interior fluid of
bubbles has negligible inertia so that the interface shape
dynamics are instead governed by internal pressure and
the surrounding fluid. However, bubbles can still be unsta-
ble at have difficult maintaining high We conditions. For
example, Davies and Taylor (1950) noted ‘‘significant diffi-
culty” in creating the initial conditions for large spherical-
cap bubbles, lest they break up into smaller bubbles. In
fact, contaminated bubbles tend to be constrained to
We < 10 (Fan and Tsuchiya, 1990). Furthermore, Emin is
not universal since toroidal bubbles can form at high
We depending on the initial conditions (Bonometti and
Magnaudet, 2006) while skirted bubbles can form at
We > 100 and skirted drops at We > 10 at intermediate
Reynolds numbers (Clift et al., 1978).

The incremental drag for contaminated bubbles and
drops can be constructed in a manner similar to that for
drops in a gas (using Eqs. (6), (36), and (37)) and correla-
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tions are obtained for both contaminated bubbles and
contaminated drops. However, the density ratio effect
differentiates these two classes of contaminated fluid
particles from each other. For contaminated bubbles
(q*ll1), the trends are shown in Fig. 19 with an empirical
fit given by

DC�D 	 tanh 0:0038ðWeRe0:2
p Þ

1:6
h i

ð46Þ

However, the correlation of the data and this fit in this fig-
ure is not always strong and is effectively qualitative for
intermediate deformations.

In contrast to the other fluid particle cases, the We influ-
ence on DC�D for contaminated drops in a liquid is well
correlated but quite complex in form (Fig. 20). This pecu-
liar dependence was also observed by Hu and Kintner
(1955) who suggested that changes in the trend curvature
may be related to the onset of trajectory oscillations and
irregular (e.g. asymmetric) shapes. While Hu and Kitner
recommend an empirical fit for terminal velocity conditions
as a function of We and Mo, no empirical fit is proposed
herein due to the convoluted trends (though Eq. (46) can
be used for a qualitative trend). The predictions of contam-
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Fig. 19. Incremental drag coefficient ratio for contaminated bubb
inated fluid bubbles are summarized in Fig. 21, where the
empirical representations are reasonably robust for small
Reynolds numbers but are more qualitative for larger Rey-
nolds numbers with intermediate deformation.
8. Aspect ratios and drag for pure drops in liquids

The final fluid particle condition examined for isolated
drag behavior is that of pure drops in liquids. Clift et al.
(1978) suggested that the aspect ratio for such particles
may be related to l* and Bo. However, when data is con-
sidered in terms of Weber number as in Fig. 22, no substan-
tial dependence on viscosity ratio is observed for
0.8 < l* < 2.4. When compared to other fluid particle cases,
the aspect ratio trends for pure drops in a liquid (l* � 1)
are similar to those for contaminated conditions (l*� 1)
at low We but tend to those for clean bubble conditions
(l*� 1) at high We. This result may be due to increased
sensitivity of even small amounts of surfactants which
result for very small particles in conjunction with the
reduced amount of recirculation possible when l* is order
unity. In contrast, large drops with increased Weber num-
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les in liquids based on data of Haberman and Morton (1953).
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ber are much less susceptible to contamination so that they
can tend to clean bubble deformations. This issue is further
complicated by the fact that significant secondary motion
can occur for immiscible drops at these conditions. As
such, the behavior for l* � 1 is not well understood and
only a crude approximation to aspect ratio can be put forth
for We < 4:
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E � 1� 0:75 tanhð0:07Weþ 0:001We4Þ ð47Þ

The normalized drag increment for pure drops in liquids is
shown as a function of We in Fig. 23, where the lower-
bound CD is that for a sphere of variable viscosity (Eq.
(12)) and the upper bound is that for a maximum-deforma-
tion fluid particle (Eq. (36)). The results indicate consider-
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able scatter, again without a strong correlation to l*. The
normalized drag increment for pure drops in a liquid
(l* � 1) approximately follows the fit

DCD� 	 0:5f1þ tanhðWe� 5:5Þg ð48Þ
Because of the large amount of scatter, this expression is
only be reasonable for Weber numbers of 4 or less.

9. Conclusions

In summary, fluid particles exhibit deformations and
drags which depend strongly on Reynolds number and
Weber number consistent with theoretical results. Experi-
mental data and resolved-surface simulations agree well
with available theoretical predictions (Taylor and Acrivos,
1964; Moore, 1963, 1965; and Davies and Taylor, 1950) in
their respective applicable conditions. The above results
also agree reasonably well with the correlations developed
herein, which may be helpful to simulate the dynamics of
multiphase flow in non-equilibrium conditions.

The shapes considered in this study were limited to those
with Weber numbers less than 100, excluding skirted bub-
bles. For intermediate Reynolds number and separated
flow conditions, the aspect ratio data collapsed remarkably
well with Weber number especially for clean bubbles and
drops in gas. For contaminated bubbles and drops in liq-
uids, the effect of viscosity ratio and surfactant concentra-
tion can yield some variations, but again shapes are well
correlated with Weber number. In all cases, it was found
that there is negligible deformation for particle Reynolds
numbers much less than unity, regardless of the Weber
number.

The maximum drag for all types of fluid particles was
described reasonably well by the simple Darton and Harri-
son (1974) expression, while a single closed-form expres-
sion was obtained for minimum drag (the spherical
condition) as a function of viscosity ratio and Reynolds
number. The drag for intermediate deformations was
found to correlate well with Weber number for clean bub-
bles, and with the parameter WeRe0:2

p for separated flow
conditions (Rep > 100). This led to simple correlations for
the incremental drag for bubbles in liquids and drops in
gasses. However, the drag increments for contaminated
drops in liquids are more qualitative, which may be related
to complex interactions which can occur between deforma-
tion, surfactant concentration, particle wakes, and trajec-
tory unsteadiness.

Finally, it should be noted that these results and predic-
tions are limited to steady uniform flows and isolated par-
ticles. While there are several results available for finite
particle concentrations (variations in mass and volume
fractions) and wall effects in the literature, additional
experimental and numerical data are needed to integrate
these effects over a wide range of density ratios, viscosity
ratios, Weber and Reynolds numbers, etc. In this regard,
recent advances in treating deformable particle may be
helpful in further quantifying these trends.
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